机读格式显示(MARC)
- 010 __ |a 978-7-04-046993-6 |b 精装 |d CNY199.00
- 100 __ |a 20170516e20172012em y0chiy0121 ba
- 200 1_ |a J-全纯曲线和辛拓扑 |A J- Quan Chun Qu Xian He Xin Ta Pu |d = J-holomorphic curves and symplectic topology |f Dusa McDuff, Dietmar Salamon |z eng
- 210 __ |a 北京 |c 高等教育出版社 |d 2017
- 215 __ |a xiv, 726页 |c 图 |d 27cm
- 225 2_ |a 美国数学会经典影印系列 |A mei guo shu xue hui jing dian ying yin xi lie
- 306 __ |a 本影印版由高等教育出版社有限公司经美国数学会独家授权出版
- 314 __ |a 责任者McDuff规范汉译姓: 麦克达夫; 责任者Salamon规范汉译姓: 萨拉蒙
- 320 __ |a 有书目 (第695-709页) 和索引
- 330 __ |a J-全纯曲线理论自其由Gromov于1985年引入以来, 已经变得非常重要。在数学中, 它的应用包括许多辛拓扑中的关键结果。它也是创立Floer同调的主要灵感之一。在数学物理中, 它提供了一个自然的语境用以在其中定义镜像对称猜想的两个重要成分--Gromov-Witten不变量和量子上同调。本书的主要目的是以充分和严格的细节来建立这个主题的基本定理。特别地, 本书包含关于球面的Gromov紧性定理、球面的黏合定理以及在半正情形下量子乘法的结合性的完整的证明。本书也可以作为对辛拓扑当前工作的介绍: 有两个关于应用的长的章节, 一章专注于辛拓扑的经典结果, 另一章涉及量子上同调。最后一章概述了Floer理论的一些最新进展。本书的五个附录提供了与线性椭圆算子的经典理论、Fredholm理论和Sobolev空间相关的必需的背景知识, 以及关于零亏格稳定曲线模空间的讨论和四维流形中J-全纯曲线的交点的正性的证明。第二版澄清了各种争议, 纠正了第一版中的几个错误, 并包含了一些在第10章和附录C与D中的增加的结果, 更新了对于最新进展的参考文献。
- 410 _0 |1 2001 |a 美国数学会经典影印系列
- 510 1_ |a J-holomorphic curves and symplectic topology |z eng
- 606 0_ |a 曲线 |A qu xian |x 英文
- 606 0_ |a 拓扑 |A ta pu |x 英文
- 701 _1 |a 麦克达夫 |A mai ke da fu |g (McDuff, Dusa) |4 著
- 701 _1 |a 萨拉蒙 |A sa la meng |g (Salamon, Dietmar) |4 著
- 801 _0 |a CN |b AUSTL |c 20180507
- 905 __ |a AUSTL |d O123.3/M445